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Abstract 

Skin and subcutaneous conditions affect an estimated 1.9 billion people at any given 

time and remain the fourth leading cause of non-fatal disease burden worldwide. 

Access to dermatology care is limited due to a shortage of dermatologists, causing long 

wait times and leading patients to seek dermatologic care from general practitioners. 

However, the diagnostic accuracy of general practitioners has been reported to be only 

0.​24-​0.​70 (compared to ​0.​77-​0.​96 for dermatologists), resulting in over- and 

under-referrals, delays in care, and errors in diagnosis and treatment. In this paper, we 

developed a deep learning system (DLS) to provide a differential diagnosis of skin 

conditions for clinical cases (skin photographs and associated medical histories). The 

DLS distinguishes between 26 of the most common skin conditions, representing 

roughly 80% of the volume of skin conditions seen in a primary care setting. The DLS 

was developed and validated using de-identified cases from a teledermatology practice 

serving 17 clinical sites via a temporal split: the first 14,021 cases for development and 

the last 3,756 cases for validation. On the validation set, where a panel of three 

board-certified dermatologists defined the reference standard for every case, the DLS 

achieved ​0.71 and 0.93​ top-1 and top-3 accuracies respectively, indicating the fraction 

of cases where the DLS’s top diagnosis and top 3 diagnoses contains the correct 

diagnosis. For a stratified random subset of the validation set (n=963 cases), 18 

clinicians (of three different training levels) reviewed the cases for comparison. On this 

subset, the DLS achieved a ​0.67 top-1 accuracy, non-inferior to board-certified 

dermatologists (0.63, p<0.001), and higher than primary care physicians (PCPs, 0.45) 

and nurse practitioners (NPs, 0.41). The top-3 accuracy showed a similar trend: 0.90 

DLS, 0.75 dermatologists, 0.60 PCPs, and 0.55 NPs​. These results highlight the 

potential of the DLS to augment the ability of general practitioners who did not have 

additional specialty training to accurately diagnose skin conditions by suggesting 

differential diagnoses that may not have been considered. ​Future work will be needed to 

prospectively assess the clinical impact of using this tool in actual clinical workflows. 
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Introduction 

Skin disease is the fourth leading cause of nonfatal disease burden globally, 

affecting 30-70% of individuals and prevalent in all geographies and age groups​1​. Skin 

disease is also one of the most common chief complaints in primary care, with 8-36% of 

patients presenting with at least one skin complaint​2,3​. However, dermatologists are 

consistently in short supply, particularly in rural areas, and consultation costs are 

rising​4,5​. Thus, the burden of triage and diagnosis commonly falls on non-specialists 

such as primary care physicians (PCPs), nurse practitioners (NPs), and physician 

assistants​6–8​.  Because of limited knowledge and training in a specialty with hundreds of 

conditions​9​, diagnostic accuracy of non-specialists is only 24-70%​10–13​, ​despite the 

availability and use of references such as dermatology textbooks, UpToDate​14​, and 

online image search engines​15​. Low diagnostic accuracy can lead to poor patient 

outcomes such as delayed or improper treatment. 

To expand access to specialists and improve diagnostic accuracy​, 

store-and-forward teledermatology has become more popular, with the number of 

programs increasing by 48% in U.S. non-governmental programs between 2011 and 

2016​16​. In store-and-forward teledermatology, digital images of affected skin areas, 

typically captured with digital cameras or smartphones, are transmitted along with other 

medical information to a dermatologist. The dermatologist then remotely reviews the 

case and provides consultation on the diagnosis, work-up, treatment, and 

recommendations for follow-up. This approach has been shown to result in similar 

clinical outcomes compared to conventional consultation in dermatology clinics​17​, and 

improved satisfaction from both patients and providers​18​.  

The use of artificial intelligence tools may be another promising method of 

broadening the availability of dermatology expertise. Recent advances in deep learning 

have facilitated the development of artificial intelligence tools to assist in diagnosing skin 

disorders from images. Many prior works have focused on the visual recognition of skin 

lesions from dermoscopic images​19–26​, which require a dermatoscope. However, 

dermatoscopes are usually inaccessible outside of dermatology clinics and are 
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unnecessary for many common skin diseases. By contrast, others have attended to 

clinical photographs. For example, Esteva et al. applied deep learning to photographs of 

skin cancers to distinguish malignant from benign variants​27​. Han et al. developed a 

region-based classifier to identify onychomycosis in clinical images​28​. Yang et al.​29 

presented a new visual representation to diagnose up to 198 skin lesions using a 

dataset of 6,584 clinical images from an educational website​30,31​. Some of these works 

also reported comparable performance to experts on binary classification tasks (benign 

vs. malignant) or on skin lesion conditions​22–24,27​. Though the majority of the papers 

examined individual skin lesions, dermatologic conditions seen in routine practice more 

commonly include non-cancerous conditions such as inflammatory dermatoses and 

pigmentary issues​32​. These skin problems have yet to be addressed despite their high 

prevalence and similarly low diagnostic accuracy by non-specialists​19–21,27–30,33,34​. 

Moreover, prior work has focused on predicting a single diagnosis, instead of a full 

differential diagnosis. A differential diagnosis is a ranked list of diagnoses that is used to 

plan treatments in the common setting of diagnostic ambiguity in dermatology, and can 

capture a more comprehensive assessment of a clinical case than a single diagnosis​35​. 

In this paper, we developed a deep learning system (DLS) to identify 26 of the 

most common skin conditions in adult cases that were referred for teledermatology 

consultation. Our DLS provides several advances relative to prior work. First, instead of 

a single classification between a small number of conditions, our DLS provides a 

differential diagnosis across 26 conditions that include various dermatitides, 

dermatoses, pigmentary conditions, alopecia, and lesions, to aid clinical decision 

making. Second, instead of relying only on images, our DLS leverages additional data 

that are available to dermatologists in a teledermatology service, such as demographic 

information and the medical history. Third, the DLS supports a variable number of input 

images, and the benefit of using multiple images was assessed. Finally, to understand 

the potential value of the DLS, we compared the DLS’s diagnostic accuracy with 

board-certified clinicians of three different levels of training: dermatologists, PCPs, and 

NPs. 
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RESULTS 

Overview of approach 
Our DLS has two major components: a variable number of deep convolutional neural 

network modules to process a flexible number of input images, and a shallow module to 

process metadata which includes patient demographic information and medical history 

(Fig. 1 and Supplementary Table 1). To develop and validate our DLS, we applied a 

temporal split to data from a teledermatology service: the first approximately 80% of the 

cases (years 2010-2017) were used for development, while the last 20% (years 

2017-2018) were used for validation (Table 1). This simulates a “prospective” setting 

where the model is developed on past data and validated on data collected “in the 

future”, and is arguably a form of external validation​36​. To avoid bias, we ensured that 

no patient was present in both the development and validation sets. Each case in the 

development set was then reviewed by a rotating panel of 1 to 29 dermatologists to 

determine the reference standard differential diagnosis, while each case in the 

validation set was reviewed by a panel of three U.S. board-certified dermatologists 

(Methods). After excluding cases with multiple skin conditions and those that were 

non-diagnosable, 14,021 cases with 56,134 images were used for development, while 

3,756 cases with 14,883 images were used for validation (validation set “A”; a smaller 

subset “B” was used for comparison with clinicians and is described in the relevant 

section). In total, 53,581 dermatologist reviews were collected for development and 

11,268 reviews for validation. 

DLS performance 
The DLS’s top differential diagnosis in validation set A had a “top-1 accuracy” 

(accuracy across all cases) of 0.71 and an average “top-1 sensitivity”​ ​(sensitivity 

computed for each condition and averaged) across the 26 conditions of 0.60 (Fig. 2a 

and Extended Data Table 1). When the DLS was allowed three diagnoses (for example 

to mimic a clinical decision support tool that suggests a few possibilities for the 

clinician’s consideration), the DLS’s top-3 accuracy rose to 0.93 and average top-3 

4 

https://paperpile.com/c/aSkW0o/dXvn


sensitivity across the 26 conditions rose to 0.83. To ensure that the DLS was not biased 

against different skin tones, we evaluated DLS accuracy stratified by Fitzpatrick skin 

type (Extended Data Table 2). Among the Fitzpatrick skin types that comprised at least 

5% of the data (types II-IV), the top-1 accuracy ranged from 0.69 to 0.72, and the top-3 

accuracy ranged from 0.91 to 0.94. Additional subanalyses based on self-reported 

demographic information (i.e., age, sex, race and ethnicity) are also presented in 

Extended Data Table 2. Evaluation of the DLS’s overall differential diagnosis using the 

average overlap metric​37,38​ yielded 0.67 overall (Fig. 2b), and 0.66-0.68 when stratified 

by Fitzpatrick skin types (Extended Data Table 2). The DLS performance across the 26 

conditions is presented in Extended Data Fig. 1a. 

DLS performance compared with clinicians 
To compare DLS performance with clinicians, validation set A was randomly 

subsampled using stratified sampling by condition. This resulted in 963 cases with 

3,707 images (“validation set B”) that was relatively enriched for the rarer conditions 

(e.g., 2-5% prevalance in “B” compared to below 1% in “A”). Eighteen clinicians of three 

different levels of training (dermatologists, PCPs, and NPs, all of whom were 

board-certified) graded validation set B. On this smaller dataset, the DLS achieved a 

top-1 accuracy of 0.67, compared to 0.63 for dermatologists, 0.45 for PCPs, and 0.41 

for NPs (Fig. 2a). The DLS was non-inferior to the dermatologists at a 5% margin 

(p<0.001). The top-3 accuracy was substantially higher at 0.90 for the DLS, compared 

to 0.75 for dermatologists, 0.60 for PCPs, and 0.55 for NPs. Consistent with the top-1 

and top-3 accuracies, evaluation of the full differential diagnosis using the average 

overlap metric yielded 0.63 for the DLS, compared with 0.58 for dermatologists, 0.46 for 

PCPs, and 0.43 for NPs. The average top-1 and top-3 sensitivities across the 26 

conditions followed the same trend (Extended Data Fig. 1b and Extended Data Table 

1). Representative examples of cases that were missed by one or more PCPs or NPs 

are shown in Fig. 3a-e. 

5 

https://paperpile.com/c/aSkW0o/6k2h+J2i8


Subgroup analysis 
Next, we assessed the DLS’s ability to distinguish between conditions that 

present similarly and can be misidentified in clinical settings, and compared the DLS to 

clinicians as before (see the “Conditions in the subcategory” column of Table 2 for 

definitions of the subgroups). The first analysis distinguished between malignant vs. 

benign growths. Note that in this and subsequent subanalyses, the DLS and clinicians 

could have determined the case belonged to neither category (e.g. neither a malignant 

nor a benign growth; i.e. not a growth at all). Because the decision to biopsy depends 

on whether malignant conditions are in the differential, in this “growths” subgroup 

analysis, we focused on the top-3 sensitivity for malignant growths. The DLS’s top-3 

sensitivity of 0.88 was comparable with that of dermatologists (0.89), and higher than 

that of both PCPs and NPs (0.69 and 0.72, respectively). 

The second subgroup analysis distinguished between infectious vs. noninfectious 

cases of erythematosquamous and papulosquamous skin diseases, the DLS was more 

sensitive than the clinicians at identifying the infectious subcategory (top-1 sensitivity = 

0.75, compared to clinicians’ range of 0.48-0.68; top-3 sensitivity = 0.91, compared to 

clinicians’ range of 0.60-0.85). The DLS was also more sensitive at identifying the 

non-infectious subcategory (top-1 sensitivity = 0.67, compared to clinicians’ range of 

0.43-0.49; top-3 sensitivity = 0.95, compared to clinicians’ range of 0.55-0.62). 

The last subgroup deals with two types of hair loss: alopecia areata and 

androgenetic alopecia. The sensitivity of the DLS for alopecia areata (top-1 sensitivity = 

0.77, top-3 sensitivity = 0.86) was higher than PCPs and NPs (0.45-0.59 and 0.64-0.77 

for top-1 and top-3 respectively), but not higher than dermatologists (top-1 sensitivity = 

0.80, top-3 sensitivity = 0.91). For androgenetic alopecia, the DLS had a top-1 

sensitivity of 0.79 and a top-3 sensitivity of 0.91, which was higher than the 

dermatologists at 0.69 and 0.84, and substantially higher than PCPs and NPs 

(0.37-0.43 and 0.22-0.29, respectively). 
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Importance of input data: images versus demographics and medical history 
We examined the importance of each of the different input data to the DLS. 

Among the 45 types of non-image metadata (demographic information and medical 

history, detailed in Supplementary Table 1), the type of self-reported skin problem (e.g. 

“acne”, “hair loss”, or “rash”), history of psoriasis, and the duration of the chief complaint 

(skin problem) had the greatest impact on accuracy (Fig. 4a). 

For image inputs, DLS’s performance dramatically improved when more than one 

image was provided, and plateaued when there were at least five images (Fig. 4b, blue 

line). This trend was preserved when the non-image metadata were also withheld from 

the DLS (Fig. 4b, red line). Compared to withholding metadata from the DLS that was 

developed in the presence of metadata, training another DLS that uses only images (so 

that it does not “rely” on metadata) yielded a small improvement (Fig. 4b, green line). 

Finally, saliency analysis via integrated gradients​39​ highlighted those regions of the 

image where a skin condition was visible, suggesting the DLS had generally learned to 

focus on the right region of interest when making the prediction (Fig. 3a-e).  

We also examined the effect of training dataset size on the performance of the 

DLS, and observed that more training data led to a better top-1 accuracy, though with 

diminishing return after 10,000 cases (Supplementary Fig. 7). 

DISCUSSION 
In this study, we developed and validated a DLS to identify 26 of the most 

common skin conditions that were referred for a teledermatology consult, representing 

roughly 80% of cases that present in a primary care setting​1,32,40–42​. Among these cases, 

the DLS’s top-1 diagnostic accuracy was non-inferior to dermatologists and higher than 

PCPs and NPs. Moreover, the DLS’s high top-3 accuracy and average overlap metric 

suggest that the DLS’s full differential diagnosis is relatively complete, and may help 

alert clinicians to differential diagnoses that they may not have considered.  

Providing assistance with a differential diagnosis instead of predicting a single 

diagnosis is particularly important in dermatology. Because most skin conditions are not 
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verified with pathology, the differential diagnosis is used for decision making around 

workup and treatment. If all conditions in the differential diagnosis share the same 

treatment, a single diagnosis may not be clinically necessary as the clinician can 

proceed with treatment. For example, if the differential diagnosis includes eczema and 

psoriasis, the clinician may choose to start treatment with topical steroids without having 

a single diagnosis. If the diagnoses on the differential have opposing treatments (e.g. 

treatment for one condition on the differential may aggravate another diagnosis on the 

differential), a clinician can still consider this group of diagnoses together to determine a 

workup or initiate treatment. For example, if a differential diagnosis included both tinea 

and eczema, the clinician might perform an in-office KOH exam. If this exam is not 

possible, the clinician may monitor responsiveness to empiric treatment with a topical 

antifungal, which could treat tinea and likely not worsen eczema. By contrast, a topical 

steroid could worsen the condition if it was actually tinea. Another example is a 

differential including both melanoma and benign nevus. The presence of melanoma on 

a differential, even if not the most suspected diagnosis, may prompt a clinician to biopsy 

the lesion to rule out this dangerous clinical entity. In all these situations, the DLS may 

be an effective aid to non-specialist clinicians by helping them arrive at both a primary 

diagnosis and a more complete differential diagnosis. Dermatologists in 

“store-and-forward” teledermatology (where dermatologists review cases 

asynchronously) could also potentially use such a DLS to help rapidly triage cases. 

To better understand the specific impact of the DLS in challenging diagnostic 

situations, our subgroup analyses examined several conditions that have similarities in 

visual presentation, and where the diagnostic accuracy between conditions in different 

groups can affect the appropriateness of the subsequent clinical decisions. The three 

subgroup analyses were: individual growths, erythematosquamous and 

papulosquamous skin disease, and hair loss. For individual growths, malignant lesions 

should have subsequent biopsy or excision whereas patients with benign lesions can be 

reassured. The top-3 sensitivity for malignant lesions is important because the inclusion 

of a diagnosis of malignancy on the differential diagnosis may prompt a clinician to 
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obtain a specimen for pathology even if it is not the primary suspected diagnosis. For 

erythematosquamous and papulosquamous skin disease, these eruptions can be 

clinically similar with erythema and scaling though they can have very different 

etiologies and treatment plans. High sensitivity is particularly important as first-line 

treatment of the non-infectious entities is often with a topical steroid, which conversely 

would make an infectious process like tinea more resistant to treatment and can even 

hinder diagnosis (e.g. tinea incognito​43​) at future appointments . Additionally, the 

inclusion of tinea as a potential diagnosis can prompt a clinician to do a KOH exam for 

confirmation. For hair loss, the two conditions have different etiologies, possible work-up 

and treatment options.  Distinguishing one from the other could allow a clinician to start 

first-line therapies and possible workup for these conditions. In the first subgroup, the 

DLS was very “specific”; i.e. it was able to correctly identify the “negative” subcategory 

of benign growths. Despite a lower top-1 sensitivity for malignant lesions, the DLS had a 

high top-3 sensitivity which is on-par with dermatologists. For erythematosquamous and 

papulosquamous skin disease, and hair loss, the DLS was accurate at detecting both 

subcategories in each subgroup. Overall, the DLS had substantially higher sensitivities 

than non-specialty clinicians (with deltas ranging from 2% to 57% for top-1, and 9% to 

54% for top-3) in these subgroups. This suggests that the DLS may be particularly 

valuable in helping determine the workup or initiate treatment based on a working 

diagnosis. 

Overall in this study, dermatologists were substantially more accurate than PCPs 

and NPs. These results were not surprising as the majority of the cases were sent by 

primary care providers to a teledermatology service, and presumably the clinician had 

found diagnostic difficulty for a significant proportion of these cases. Though not strictly 

comparable because of differences in study design, the low accuracies we observed 

(36-50%, Supplementary Table 2) are in line with those previously reported (​24-70%​). 

These numbers serve to highlight the challenging nature of this classification task that 

incorporates both visual cues and non-visual information, and underscores the need for 

decision support tools for non-specialists. 
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Two conditions in particular seemed challenging based on low clinician 

accuracies (Extended Data Fig. 1b): allergic contact dermatitis (ACD) and 

post-inflammatory hyperpigmentation (PIH). Similarly, agreement between 

dermatologists defining the reference standard was relatively low (Supplementary Table 

3). To understand these conditions better, two dermatologists not involved in the 

reference standard or as comparator clinicians reviewed the ACD and PIH cases. 8 out 

of the 27 ACD cases were found to be clinically difficult because they did not have a 

“classic” visual presentation, thus causing ambiguity. Though the clinicians were asked 

to use the most specific term possible, some of the comparator clinicians used the more 

general label of “contact dermatitis”. However, contact dermatitis also encompasses 

irritant contact dermatitis, which has a different etiology, workup, counseling, and 

treatment interventions, a concept that may not be familiar to non-dermatologist 

graders. This lack of specificity had prompted us to (a priori) categorize contact 

dermatitis under “Other”, which was deemed to be an incorrect answer for ACD cases 

because we did not consider “partial correctness” in our analysis. On the other hand, 

PIH was commonly “misdiagnosed” by the comparator clinicians as they often 

attempted to label what the primary process leading to the PIH could have been. To 

ensure that that these complexities did not cause our DLS evaluations to be overly 

optimistic, we recomputed the sensitivities excluding these two conditions for the DLS 

and all clinicians (Supplementary Table 4), finding 2-4% improved performance for both 

the DLS and clinicians, with no change in conclusions. More generally, the same 

conclusions also applied for subanalysis based only on easier cases (where two or 

three of the reference standard dermatologists agreed on the primary diagnosis), with 

better performance for both the DLS and clinicians (Supplementary Fig. 1-2). 

Previous studies in this area generally have not focused on providing diagnostic 

assistance in a more generalized workflow, but instead have been focused on early 

screening of skin cancer, and thus limited to a narrower scope of conditions (e.g. 

melanoma or not), or on more standardized images that require specialized equipment 

(i.e., dermoscopic images). Of the studies that attempt to tackle a broader range of 
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conditions​29,30,34​, the datasets were either often educational in nature, leading to 

potential bias towards cases with more typical presentations or unusually severe cases 

that prompted pathologic confirmation​29,30​, or a simplification of labels towards a mix of 

morphological descriptions (e.g. erythema/“redness”) and diagnoses that are too broad 

to guide clinical workup or treatment (e.g. hair loss without further details)​34​. As a result, 

the utility of these works in actual clinical settings are unclear. By contrast, the images 

in our data were taken by different medical assistants across 17 sites, representing a 

wide variety of lighting conditions, perspective, and backgrounds. Our dataset is also 

representative of cases that required dermatology consults, and the conditions which 

our DLS predicts are specific enough to guide a clinician to next steps in clinical care. 

However, due to the impracticality of performing exhaustive tests or biopsies for all skin 

conditions, there exists inevitable diagnostic uncertainty in actual clinical settings. To 

help resolve this, our DLS learns to predict a differential diagnosis instead of a single 

diagnosis, enabling a decision support tool that surfaces potential diagnoses for 

clinicians to consider. 

Our DLS can potentially augment the current clinical workflow in a primary care 

setting in several ways. First, the DLS can prompt clinicians to include on their 

differential a diagnosis that they would not have previously considered. The DLS may 

thus  prevent misdiagnosis, delay to care, and improper treatment which can lead to 

poor clinical outcomes, a bad patient experience, and increased costs of care. Second, 

by helping to improve the accuracy of non-dermatologists, the DLS may enable 

dermatologists to focus on cases that are further along in the care process or which 

require specialized dermatologic care. Finally, the DLS can aid in the referral triage 

process. With challenges to access, it is important to identify referred cases as urgent 

versus non-urgent. If the non-dermatologist clinician provides a more accurate 

diagnostic assessment of the patient at the time of referral, the patient can be more 

appropriately triaged for an appointment. 

On the technical aspect, while most prior work used only a single image as input, 

our DLS integrates information from both metadata and one or more images. We further 
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quantify the magnitude of improvement as metadata or more images are provided for 

each case. Similarly, dermatologists in a teledermatology setting look at multiple images 

to better appreciate the three-dimensional and textural aspects of the skin findings. We 

also show that visual features alone enable reasonable diagnostic accuracy by the DLS, 

and accuracy improves with more images, albeit with diminishing returns after 2-3 

images. This has implications on the number of images required for broader real-world 

use: a single image is likely suboptimal but more than five provides marginal benefit. 

The addition of metadata such as demographic information and medical history 

provides a 4-5% consistent improvement independent of the number of images 

available, with most of the benefit coming from a handful of features out of the 45 

provided. This suggests that a few simple questions may be sufficient to capture most of 

the diagnostic accuracy benefits. Moreover, even the most “important” metadata, i.e., 

the type of self-reported skin problem, will cause an average of 1.2% reduction in top-1 

accuracy when its value is likely incorrect. This suggests that our DLS is relatively 

robust to metadata error. 

Our study has several limitations. First, we did not have a completely external 

dataset for validation, but instead adopted a prospective-like design by splitting the data 

temporally. This mimics developing a DLS using several years of retrospective data at a 

teledermatology practice (which served 17 sites across 2 states), and then validating 

that DLS prospectively at the same practice on data collected over the next year. To aid 

generalization beyond the specific metadata available in this dataset, we also have 

trained a version of the DLS that uses only images as input (Fig. 4b), which may be 

more easily applicable to practices without or with different metadata. Second, our data 

did not have pathologic confirmation. Instead, our reference standard for each case was 

based on aggregating the differential diagnoses of a panel of board-certified 

dermatologists (“collective intelligence”, see Methods and Supplementary Methods for 

in-depth analysis). Ambiguities in diagnosis do exist in clinical practice, which makes it 

challenging to evaluate the accuracy of clinicians and DLS, especially for conditions like 

rashes which are not typically biopsied. Thirdly, as ​our dataset was de-identified, only 
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structured metadata were available to both the DLS and the clinicians. While useful, it is 

less rich than free text clinical notes or an in-person examination. Though we were 

unable to assess this directly, the lack of more comprehensive information may have 

lowered the diagnostic accuracy of both clinicians and the DLS. With regards to the 

top-3 metrics, though instructed to, the clinicians provided fewer than 3 diagnoses when 

sufficiently confident in their first few diagnoses. Thus the clinicians may have higher 

top-3 metrics if forced to provide at least 3 diagnoses.​ ​Lastly, actual clinical cases may 

present with multiple conditions at the same time. In principle, multiple conditions may 

be handled as several single-condition diagnoses, though treatment plans may be more 

complex. In this study, however, multiple conditions were used as an exclusion criteria 

(Table 1). ​Future work will also need to assess the generalizability of the DLS to data 

from additional sites spanning more countries and states, and cases imaged on a 

greater variety of devices (see Methods). 

To conclude, ​we have developed a DLS to identify 26 of the most common skin 

conditions at a level comparable to board-certified dermatologists, and more accurate 

than general practitioners. Our approach could be directly applied to store-and-forward 

teledermatology by assisting clinicians in triaging cases, thus shortening wait times for 

specialty care and reducing morbidity that results from skin diseases. Within (in-person) 

primary care, our algorithm could help improve the accuracy of non-dermatologists, thus 

allowing the treatment to be initiated instead of waiting for referrals. 

METHODS 

Dataset 
The dataset for this study consisted of adult cases from a teledermatology 

service serving 17 primary care and specialist sites from 2 states in the U.S.. Cases 

were predominantly referred by medical doctors, doctors of osteopathic medicine, NPs, 

and physician assistants. Each case contained 1-6 clinical photographs of the affected 

skin areas taken by medical assistants or trained nurses (approximately 75% of cases 

had six or fewer images; for cases with more images, six images were randomly 
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selected) and metadata such as patient demographic information and medical history 

(for a complete list, see Supplementary Table 1). Images were taken on a mix of 

devices: Canon point-and-shoot cameras and Apple iPad Minis. ​All images and 

metadata were de-identified according to Health Insurance Portability and Accountability 

Act (HIPAA) Safe Harbor prior to transfer to study investigators.​ The protocol was 

reviewed ​by Advarra IRB (Columbia, MD), which determined that it was exempt from 

further review under 45 CFR 46.  

To mimic a prospective design, the dataset was split in a 80:20 ratio based on 

the submission date of the case: the development set contained cases from 2010-2017, 

while the validation set contained cases from 2017-2018 (Table 1). The validation set 

was filtered to ensure no patient overlap with the training set and thus prevent any 

potential label leakage due to the presence of cases from previous visits in the training 

set. This validation set “A” was further subsampled to reduce class imbalance among 

the skin conditions of interest to obtain validation set B (Table 1). Selection of skin 

conditions are described in a subsequent section (“Labeling tool and skin condition 

mapping”). 

Reference Standard Labeling: Validation Set 
Because of the impracticality of pathologic confirmation of all diagnoses (e.g. 

rashes are rarely biopsied), each case’s differential diagnosis for the validation set was 

provided by a rotating panel of three dermatologists from a pool of 14 U.S. 

board-certified dermatologists. ​The dermatologists had 5-30 years of experience 

(average 9.1 years, median 6.5 years), and were actively seeing patients in clinic.​ The 

dermatologists also passed a certification test on a small number of cases to ensure 

that they were comfortable with grading cases using the labeling tool (Supplementary 

Table 5 and Supplementary Fig. 3). Every dermatologist graded each case (clinical 

photographs, demographic information, and medical history) independently for the 

presence of multiple skin conditions, diagnosability (e.g., due to poor image quality, 

minimal visible pathology, or limited field-of-view), and up to three differential diagnoses 

using a custom annotation tool (see “Labeling tool and skin condition mapping”). ​Cases 
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labeled as containing multiple skin conditions or as undiagnosable by the majority of the 

dermatologists were excluded from the study. 

Because grades from individual graders can demonstrate substantial variability, 

to determine the reference standard, we aggregated the differential diagnoses of the 

three dermatologists that reviewed each case based on a previously proposed “voting” 

procedure​44​ (see Supplementary Methods and for details and Supplementary Fig. 8 for 

an example). Briefly, for each grader, each diagnosis was first mapped to one of 421 

conditions (see ​“Labeling tool and skin condition mapping”​ below), and duplicate 

mapped conditions were removed. “Votes” for each of these mapped conditions were 

summed across the three dermatologists based on the relative position of each 

diagnosis within each dermatologist’s differential. The final differential was thus based 

on the aggregated “votes” across three board-certified dermatologists.  

We verified that this procedure provides substantially higher reproducibility in 

differential diagnoses than between individual dermatologists (0.73 vs 0.62, see more 

details in Supplementary Methods). The distribution of the top differential diagnoses is 

presented in Table 1. 

Reference Standard Labeling: Development Set 
The development set was further split into a training set to “learn” the neural 

network weights, and a tuning set to select hyperparameters for the training process. To 

maximize the amount of training data, more dermatologists labeled the development 

set: 1-29 dermatologists (from a cohort of 38 U.S. board-certified and 5 Indian 

board-certified dermatologists) labeled each case. Only cases considered by all of the 

dermatologists grading that case as having multiple skin conditions or undiagnosable 

were discarded. Reference standard differential diagnosis was established the same 

way as for the validation set. 

Labeling tool and skin condition mapping 
Our labeling tool provided a search-as-you-type interface ​(see ​Supplementary 

Table 5 and Supplementary Fig. 3​)​ based on the standardized Systematized 
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Nomenclature of Medicine-Clinical Terms (SNOMED-CT)​45​, within which more than 

20,000 terms were related to cutaneous disease.​ ​If the dermatologist could not find a 

matching SNOMED-CT term, the diagnosis could be entered as free text. 

Because SNOMED-CT contains terms at varying granularities and have complex 

and incompletely-specified relationships between terms​46​, three board-certified 

dermatologists mapped these terms and free text diagnoses entries to a list. The list 

was initially populated with dermatologic conditions that were common or high-acuity, 

and more conditions were added as needed. Considerations during this mapping were a 

granularity that would (1) allow a non-dermatology clinician to reasonably determine the 

next steps in clinical care, (2) enable clear and concise communication with another 

healthcare provider, and (3) exclude superfluous information for most purposes (e.g. 

specific site of the condition). For example, a diagnosis such as “alopecia” would be too 

broad, but “alopecia areata” and “androgenetic alopecia” would allow a 

non-dermatologist to engage in next steps in clinical care. 

As labels for cases were collected, additional conditions were added to the list as 

appropriate based on the discussion of at least two of the three dermatologists. Some 

diagnoses were marked as invalid if they were too broad, non-skin entries, reflected 

multiple skin conditions (such as a syndrome with multiple skin findings), or were 

semantically unclear (e.g. tooth abrasion). All mappings were performed while blinded 

to DLS predictions and the identity of the clinicians or the cases for which the diagnoses 

were provided. The final list contained 421 conditions (Supplementary Table 6). 

Selection of the 26 skin conditions 
As in actual clinical practice, the prevalence of difference skin conditions was 

heavily skewed in our dataset, ranging from skin conditions with >10% prevalence like 

acne, eczema, and psoriasis, to those with sub-1% prevalence like lentigo, melanoma, 

and stasis dermatitis. To ensure that there was sufficient data to develop and evaluate 

the DLS, we filtered the 421 conditions to the top 26 with the highest prevalence based 

on the development set (when the labeling was approximately 80% complete). 

Specifically, this ensured that for each of these conditions, there were at least 100 
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cases in the development dataset (for DLS training purposes), and an projected 25 

cases in the validation set (for DLS evaluation). The remaining conditions were 

aggregated into an “Other” category (which comprised 22% of the cases in validation 

dataset A).  

DLS development 
The DLS has two main components, an image-processing deep convolutional 

neural network, and a shallow network that processes clinical metadata (demographic 

information and medical history). The image processing component consisted of a 

variable number (1-6, depending on the number of images in each case) of 

Inception-v4​47​ modules with shared weights. All images were resized to 459×459 pixels, 

the default size of this network architecture. The clinical metadata were featurized using 

the one-hot encoding for all categorical features. Age was used as a number normalized 

to [0,1] based on the range in the development set. These two components were joined 

at the top using a fully-connected layer (i.e. late fusion​48​). 

To help the DLS learn to predict a differential diagnosis (as opposed to a pure 

classification to predict a single label), the target label of the DLS was based on each 

case’s reference standard differential diagnosis. Specifically, the summed “votes” of 

each condition in the differential was normalized (to sum to 1), and the DLS was trained 

using a softmax cross-entropy loss to learn these “soft” target labels. ​To account for 

class imbalance, when calculating cross entropy loss, each class was weighted as a 

function of its frequency, so that cases of rare conditions would contribute more to the 

loss function. The network weights were optimized using a distributed stochastic 

gradient descent implementation​49​, to predict both the full list of 421 conditions and the 

shorter list of 27 conditions (26 conditions plus “Other”). To speed up the training and 

improve training performance, batch normalization​50​ and pre-initialization from ImageNet 

dataset were used​51​. Training was stopped after a fixed number of steps (100,000) with 

a batch size of 8. 

To train the DLS, the development set was partitioned into a training set to learn 

DLS’s parameters, and a tuning set to tune hyperparameters. Because of the severe 

17 

https://paperpile.com/c/aSkW0o/jmhq
https://paperpile.com/c/aSkW0o/EEGm
https://paperpile.com/c/aSkW0o/tBfy
https://paperpile.com/c/aSkW0o/ATLU
https://paperpile.com/c/aSkW0o/lm0j


class imbalance, we created the tune set via stratified sampling (of up to 50 cases per 

condition). To ensure a clean split with respect to patients, all cases from the patients 

represented in this sampling were moved to the tune set. 

Data augmentation was applied to improve generalization: random flipping, 

rotating, cropping, and color perturbation. The random cropping was parameterized to 

ensure that the crops had a minimum overlap of 20% with the pathologic skin region (a 

separately-collected label for every case in the training set). Random dropout was 

applied to metadata features (assigned to unknown), to help improve robustness to 

missing values or potential data errors. Six networks were trained with the same input 

and hyperparameters (see Supplementary Table 7 for a complete list of 

hyperparameters), and ensembled​52​ to provide the final prediction. 

DLS evaluation 
To evaluate the DLS performance, we compared its predicted differential 

diagnosis with the “voted” reference standard differential diagnosis using the top-k 

accuracy and the average top-k sensitivity. The top-k accuracy measures how 

frequently the top k predictions capture any of the primary diagnosis in the reference 

standard (i.e. ranked first in the differential). The top-k sensitivity assesses this for each 

of the 26 conditions separately, whereas the final average top-k sensitivity is the 

average across the 26 conditions. Averaging across the 26 conditions avoids biasing 

towards more common conditions, particularly in validation set A. We use both the top-1 

and top-3 metrics in this study. 

In addition to comparing both the DLS and clinicians against the voting-based 

reference standard differential diagnoses, we also evaluated against a reference 

standard based on agreeing with “at least one” of the three board-certified 

dermatologists comprising the reference standard (“Accuracy​any​”, see Supplementary 

Tables 2, 8-9). 

Finally, we also measured the agreements in the full differential diagnosis 

between the DLS and reference standard using the average overlap (AO)​37,38​. Because 

the clinicians were instructed to provide up to three diagnoses, we similarly filtered​ the 
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DLS’s predictions to retain the top-3. Next, unlikely diagnoses lower than a predicted 

likelihood of 0.1 (selected based on the AO computed on the tune dataset) were filtered 

to produce the final DLS-predicted differential: up to three diagnoses in ranked order. 

Comparison to clinicians 

To compare the DLS performance with clinicians, a group of 18 clinicians (who 

did not participate in prior parts of this study) provided differential diagnoses for 

validation set B. These clinicians were comprised of three groups of six U.S. 

board-certified clinicians: dermatologists, PCPs, and NPs. The NPs were selected from 

those who were practicing independently as primary care providers without physician 

supervision. Every clinician graded a random one-third of the cases, and each case was 

graded by two random clinicians from each group (six clinicians total). These clinicians 

used the same labeling tool as the dermatologists involved in determining the reference 

standard, and their diagnoses were mapped and processed similarly. In case of ties, the 

top k diagnoses were determined by randomly selecting the diagnosis from the tied 

candidates. This tie-breaking affected the top-1 analyses for 13% of 

dermatologist-provided, 24% of PCP-provided, and 14% of NP-provided diagnoses. The 

top-3 analysis was minimally affected, with no ties from dermatologists and NPs, and 

0.6% ties from PCPs. This tie-breaking avoided confounding the analysis by biasing 

towards clinicians who provided tied differential diagnoses (which indicates uncertainty). 

Feature importance 
Additionally, we investigated the relative importance of different types of inputs 

on the DLS performance. To study the effect of the number of images, we selected a 

random subset of the images for each case and measured the DLS’s performance on 

this subsampled dataset. For the clinical metadata, we used a permutation procedure 

(“permutation feature importance”​53​). Briefly, for a metadata variable of interest, this 

procedure randomly permutes its assignment across cases in the validation set A. Next, 

the performance of the DLS was measured using the perturbed dataset. To understand 

the importance of all the metadata collectively, we “dropped out” all the metadata by 
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assigning all their values to unknown. Because the network could have been 

“dependent” on metadata in this analysis, thus over-representing the importance of 

metadata, we further trained a DLS using only images, and evaluated its performance. 

Finally, we used integrated gradients​39​ to highlight the parts of each image that have the 

biggest effect on the prediction. 

Statistical analysis 

To compute the confidence intervals (CIs), we used a non-parametric bootstrap 

procedure​54​ with 1,000 samples. Because of the intensive compute required to re-run 

DLS inference, CIs for the feature importance analyses were calculated using the 

normal approximation with 20 runs (1.96×standard error, with each run performed on 

the entire validation set A). To compare the DLS performance to clinicians, a standard 

permutation test​55​ was used. Briefly, in each of the 10,000 trials, the DLS’s score was 

randomly swapped with itself or a comparator clinician’s score for each case, yielding a 

DLS-human difference in top-1 accuracy sampled from the null distribution. To perform 

the non-inferiority test, the empirical p-value was computed by adding the 5% margin to 

the observed difference and comparing this number to its empirical quantiles​54,55​. 

Non-inferiority compared to dermatologists in top-1 accuracy was documented in an 

institutional mailing list as our pre-specified primary endpoint prior to evaluating the DLS 

on the validation dataset. 
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FIGURES 

 

Fig. 1 | Overview of the development and validation of our deep learning system (DLS). 
For each case, the DLS takes as input 1 to 6 de-identified skin photographs and 45 metadata 
variables such as demographic information and medical history (left). The DLS then processes 
the images using Inception-v4 modules with shared weights before applying an average pool 
and concatenating with the metadata features. The output of the classification layer of the DLS 
is the relative likelihood of 27 categories (26 skin conditions plus “Other”, Table 1). These 
conditions were chosen based on a granularity that could guide a non-dermatologist clinician to 
next steps in clinical care. The labels used to develop and validate the DLS were provided by 
board-certified dermatologists; one or more dermatologists per case for training, and three 
dermatologists per case for the validation set. For each case, each dermatologist provided their 
top three differential diagnosis. The multiple differential diagnoses are then aggregated into a 
single ranked list (see Supplementary Fig. 8). During training, the aggregated ranked list of 
dermatologist-provided diagnoses have an associated aggregated “confidence” score per 
diagnosis, and these confidences are the target “soft” labels for the DLS. The DLS therefore 
learns from both the primary (top-ranked) diagnosis as well as the lower-ranked diagnoses. In 
this way, the DLS was trained to provide a differential diagnosis instead of a single prediction 
output. 
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a                                                                                 b  

   

Fig. 2 | Performance of the deep learning system (DLS) and the clinicians: dermatologists 
(Derm), primary care physicians (PCP), and nurse practitioners (NP) on validation set A 
and B.​ ​a​, Top-1 and top-3 accuracy for the DLS and clinicians. The sensitivity of the DLS for 
each of the 26 conditions is presented in Extended Data Fig. 1. ​b​, Average overlap (to assess 
the full differential diagnosis) of the DLS and clinicians. Average overlap ranges from 0 to 1, with 
higher values indicating better agreement. Error bars indicate 95% confidence intervals. 
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Fig. 3 | Representative examples of challenging cases missed by non-dermatologists.​ For 
each case, an original image is provided on the left, and with a saliency mask on the right. The 
middle image shows the original image in grayscale, with the saliency overlaid in green. All 
clinicians were instructed to be as specific as possible when providing the diagnostic labels​. 
Diagnoses for the reference standard and comparator clinicians who reviewed each case are 
included here and ranked by confidence from top to bottom. ​a​, The DLS’s primary diagnosis of 
basal cell carcinoma (BCC) concurs with the reference standard, both comparator 
dermatologists, and one PCP.  Both NPs and one PCP missed this diagnosis. ​b​, The DLS’s 
primary diagnosis of squamous cell carcinoma (SCC/SCCIS) concurs with the reference 
standard and both comparator dermatologists. Both NPs considered another diagnosis as more 
or equally likely, while the PCPs missed this diagnosis. ​c​, The DLS’s primary diagnosis of tinea 
concurs with the reference standard and primary diagnoses of the comparator dermatologists. 
One PCP considered another diagnosis as equally likely, while the other PCP and both NPs 
missed this diagnosis. ​d​, The DLS, comparator dermatologists, and one PCP all agreed with the 
reference standard of Alopecia Areata (AA). This was missed as a primary diagnosis by both 
NPs and one of the PCPs. ​e​, The DLS’s primary diagnosis of Androgenetic Alopecia (AGA) 
concurs with the reference standard and both comparator dermatologists. This was missed as a 
primary diagnosis by both NPs and both PCPs. In the last two cases (panels d and e), 
diagnosing the specific type of alopecia is important because AGA and AA have different 
treatments. More details about these cases are presented in Supplementary Fig. 9.  
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Fig. 4 | Importance of different inputs to the deep learning system (DLS).​ ​a​, Impact on the 
top-1 accuracy of permuting each of the top 10 most important clinical metadata across 
validation set A examples, using the same trained DLS (for all metadata, see Supplementary 
Fig. 6). ​b​, The blue line illustrates the impact on the top-1 accuracy of different numbers of input 
images for the same DLS (that was trained using all images and metadata). The red line 
illustrates a similar trend when the clinical metadata are absent from this same DLS. Finally, the 
green line illustrates the trend, but for a DLS retrained without using clinical metadata (so that 
the DLS cannot depend on the presence of clinical metadata). All trends were the average of 20 
different runs to reduce the effects of stochasticity from the permutation, image sampling, and/or 
training process. The error bars indicate 95% confidence intervals. 
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TABLES 
Table 1 | Dataset characteristics.​ The dataset contained clinical cases from a teledermatology 
practice serving 17 primary care and specialist sites from 2 states in the U.S.. To mimic a 
prospective design, the dataset was split temporally into a development set (cases seen 
between 2010 and 2017) and validation set A (cases seen between 2017 and 2018). Validation 
set B was a subset of set A that was enriched for rarer skin conditions in this study, and was 
reviewed by three groups of clinicians for comparison. 

Characteristics Development set  Validation set A  Validation set B 
(subset of “A”) 

Years 2010 to 2017 2017 to 2018 2017 to 2018 

Total no. of cases 16,539 4,145 N/A 

No. of cases with multiple skin 
conditions (excluded from study) 

1,394 224 N/A 

No. of cases indicated as 
not-diagnosable by dermatologists 
(excluded from study) 

1,124 165 N/A 

No. of cases included in study 14,021 3,756 963 

No. of images included in study 56,134 14,883 3,707 

No. of patients included in study 11,026 3,241 933 

Age*, median (25​th​, 75​th​ percentiles) 40 (27, 54) 40 (28, 54) 43 (30, 56) 

Female (%) 8,637 (61.6%) 2,371 (63.1%) 615 (63.9%) 

Fitzpatrick skin types (6 types)** 
  Type I (%) 
  Type II (%) 
  Type III (%) 
  Type IV (%) 
  Type V (%) 
  Type VI (%) 
  Unknown (%) 

 
36 (0.3%) 

2,419 (17.3%) 
5,768 (41.1%) 
4,457 (31.8%) 

456 (3.3%) 
41 (0.3%) 

844 (6.0%) 

 
9 (0.2%) 

383 (10.2%) 
2412 (64.2%) 
724 (19.3%) 
101 (2.7%) 
1 (0.0%) 

126 (3.4%) 

 
0 (0.0%) 

104 (10.8%) 
607 (63.0%) 
195 (20.2%) 

24 (2.5%) 
0 (0.0%) 
33 (3.4%) 

Skin conditions based on primary 
diagnosis (26 conditions, plus 
“other”)*** 
  Acne (%) 
  Actinic Keratosis (%) 

 
 
 

1,512 (10.8%) 
167 (1.2%) 

 
 
 

407 (10.8%) 
49 (1.3%) 

 
 
 

40 (4.2%) 
34 (3.6%) 
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  Allergic Contact Dermatitis (%) 
  Alopecia Areata (%) 
  Androgenetic Alopecia (%) 
  Basal Cell Carcinoma (%) 
  Cyst (%) 
  Eczema (%) 
  Folliculitis (%) 
  Hidradenitis (%) 
  Lentigo (%) 
  Melanocytic Nevus (%) 
  Melanoma (%) 
  Post Inflammatory Hyperpigmentation (%) 
  Psoriasis (%) 
  Squamous Cell Carcinoma /  Squamous 
Cell Carcinoma In Situ (SCC/SCCIS) (%) 
  Seborrheic Keratosis / Irritated Seborrheic 
Keratosis (SK/ISK) (%) 
  Scar Condition (%) 
  Seborrheic Dermatitis (%) 
  Skin Tag (%) 
  Stasis Dermatitis (%) 
  Tinea (%) 
  Tinea Versicolor (%) 
  Urticaria (%) 
  Verruca Vulgaris (%) 
  Vitiligo (%) 
  Other (%) 

153 (1.1%) 
290 (2.1%) 
135 (1.0%) 
242 (1.7%) 
236 (1.7%) 

1,987 (14.2%) 
273 (1.9%) 
149 (1.1%) 
86 (0.6%) 

656 (4.7%) 
84 (0.6%) 

142 (1.0%) 
1,843 (13.1%) 

 
128 (0.9%) 

 
612 (4.4%) 
275 (2.0%) 
286 (2.0%) 
213 (1.5%) 
103 (0.7%) 
213 (1.5%) 
182 (1.3%) 
116 (0.8%) 
343 (2.4%) 
200 (1.4%) 

3,395 (24.2%) 

36 (0.9%) 
96 (2.5%) 
50 (1.3%) 
45 (1.2%) 
86 (2.3%) 

659 (17.5%) 
87 (2.3%) 
45 (1.2%) 
33 (0.9%) 

183 (4.9%) 
22 (0.6%) 
51 (1.4%) 

335 (8.9%) 
 

36 (1.0%) 
 

211 (5.6%) 
60 (1.6%) 
98 (2.6%) 
70 (1.9%) 
26 (0.7%) 
34 (0.9%) 
36 (0.9%) 
34 (0.9%) 
83 (2.2%) 
74 (2.0%) 

813 (21.6%) 

25 (2.6%) 
37 (3.8%) 
33 (3.4%) 
28 (2.9%) 
31 (3.2%) 
50 (5.2%) 
32 (3.3%) 
35 (3.6%) 
32 (3.3%) 
35 (3.6%) 
19 (1.9%) 
29 (3.0%) 
39 (4.1%) 

 
33 (3.5%) 

 
38 (4.0%) 
33 (3.4%) 
37 (3.8%) 
33 (3.4%) 
25 (2.6%) 
31 (3.2%) 
35 (3.6%) 
33 (3.4%) 
34 (3.5%) 
36 (3.7%) 

98 (10.2%) 

* Ages were truncated at 90 as part of the de-identification process. For each dataset, the minimum age 
was 18 and the maximum age was 90. 
** Fitzpatrick skin type was obtained via the majority opinion of three raters trained by dermatologists to 
distinguish skin types. Some cases’ skin types were labeled as “unknown” because of reasons such as 
lack of majority agreement among raters, inconsistent skin types observed in different images, and 
insufficient visible skin regions. 
*** When multiple primary diagnosis exist, the contribution of each condition in the list towards its total 
count was fractionalized, such that the total number of cases over all conditions sums up to the size of 
each dataset. This causes a slight difference when compared to the numbers as part of the x-axes labels 
in Extended Data Fig. 1, where each condition was treated independently. 
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Table 2 | Sensitivity of the deep learning system (DLS) and three types of clinicians 
(dermatologists, Derm; primary care physicians, PCP; and nurse practitioners, NP) for 
clinically relevant and challenging subgroups based on appearance on clinical 
presentation.​ Bold indicates the highest value for each subcategory and each evaluation 
metric. 

Clinically 
relevant 
groups 

Subcategory 
Conditions in the 

subcategory 
No. of 
cases 

Top-1 Sensitivity Top-3 Sensitivity 

DLS Derm PCP NP DLS Derm PCP NP 

Growth 

Malignant  

Basal cell 
carcinoma, 
melanoma, 

squamous cell 
carcinoma / 

squamous cell 
carcinoma in situ 

(SCC/SCCIS) 

83 0.57 0.71 0.55 0.53 0.88 0.89 0.69 0.72 

Benign 

Actinic keratosis,  
cyst,  

lentigo,  
melanocytic nevus, 
seborrheic keratosis 
/ irritated seborrheic 
keratosis (SK/ISK), 

skin tag,  
verruca vulgaris 

184 0.75 0.64 0.54 0.42 0.92 0.76 0.69 0.59 

Erythemat
osquamou

s and 
papulosqu
amous skin 

disease  

Infectious Tinea, 
Tinea versicolor 

71 0.75 0.68 0.51 0.48 0.91 0.85 0.70 0.60 

Non- 
infectious 

Eczema, 
Psoriasis, 

Stasis dermatitis, 
Allergic contact 

dermatitis,  
Seborrheic 
dermatitis 

202 0.67 0.43 0.49 0.46 0.95 0.55 0.62 0.57 

Hair loss 

Alopecia 
areata  

Alopecia areata  39 0.77 0.80 0.59 0.45 0.86 0.91 0.77 0.64 

Androgeneti
c alopecia  

Androgenetic 
alopecia  

34 0.79 0.69 0.28 0.22 0.91 0.84 0.43 0.37 
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Extended Data 

a  

b  

Extended Data Fig. 1 | Performance of the deep learning system (DLS) and clinicians, 
broken down for each of the 26 categories of skin conditions.​ ​a​, Top-1 and top-3 sensitivity 
of the DLS on validation set A. ​b​, Top-1 and top-3 sensitivity of the DLS and three types of 

38 



clinicians: dermatologists (Derm), primary care physicians (PCP), and nurse practitioners (NP). 
Numbers in parentheses in the x-axes indicate the number of cases. Detailed breakdown of 
each clinician and the DLS performance on the subset of cases graded by each clinician are in 
Supplementary Table 2. Error bars indicate 95% CI.  
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Extended Data Table 1 | Performance of the deep learning system (DLS) and different 
types of clinicians, on validation sets A and B.​ The reference standard differential diagnoses 
for each case was determined by the votes of a panel of three board-certified dermatologists. 
Performance was measured by the agreement of the top-1 and top-3 diagnoses with the 
primary diagnosis of the panel. The average overlap (AO) directly compares the DLS or 
clinician-provided ranked differential diagnoses with the panel’s full differential diagnoses. The 
AO ranges from 0 to 1, with higher values indicating better agreement. Numbers in square 
braces indicate 95% confidence intervals. Bold indicates the highest value within each column 
for validation set B. 

Dataset Grader 

Top-1 Top-3 Average 
Overlap 

(AO) Accuracy Average 
Sensitivity Accuracy Average 

Sensitivity 

Validation 
set A DLS 0.71  

[0.70, 0.73] 
0.60 

[0.58, 0.62] 
0.93  

[0.93, 0.94]  
0.83 

[0.82, 0.85] 
0.67  

[0.66, 0.68] 

Validation 
set B 

(enriched 
subset of 

set A) 

DLS 0.67  
[0.64, 0.70] 

0.57 
[0.54, 0.60] 

0.90  
[0.88, 0.92] 

0.82 
[0.80, 0.84] 

0.63  
[0.62, 0.65] 

Derm 0.63  
[0.60, 0.65] 

0.51 
[0.49, 0.54] 

0.75  
[0.72, 0.77] 

0.64 
[0.61, 0.66] 

0.58  
[0.56, 0.59]  

PCP 0.45  
[0.42, 0.47] 

0.35 
[0.33, 0.38] 

0.60  
[0.57, 0.62] 

0.49 
[0.47, 0.51] 

0.46  
[0.44, 0.47] 

NP 0.41  
[0.38, 0.43] 

0.32 
[0.30, 0.34] 

0.55  
[0.52, 0.58] 

0.44 
[0.42, 0.47] 

0.43  
[0.41, 0.44] 
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Extended Data Table 2 | Performance of the deep learning system (DLS), sliced by 
self-reported demographic information (including age, sex, race and ethnicity), and 
Fitzpatrick skin type on validation set A.​ Metrics used are identical to the ones in Extended 
Data Table 1. Numbers in square braces indicate 95% confidence intervals. 

Break 
down Category 

Top-1 Top-3 Average 
Overlap 

(AO) Accuracy Average 
Sensitivity Accuracy Average 

Sensitivity 

Age 

[18, 30) 
(29.5%) 

0.77 
[0.75, 0.80] 

0.59 
[0.55, 0.65] 

0.95 
[0.93, 0.96] 

0.80 
[0.77, 0.87] 

0.71 
[0.70, 0.72] 

[30, 40) 
(19.9%) 

0.70 
[0.67, 0.74] 

0.53 
[0.49, 0.61] 

0.93 
[0.91, 0.95] 

0.80 
[0.75, 0.85] 

0.66 
[0.64, 0.68] 

[40, 50) 
(17.3%) 

0.69 
[0.65, 0.72] 

0.59 
[0.53, 0.64] 

0.93 
[0.91, 0.95] 

0.83 
[0.78, 0.87] 

0.66 
[0.64, 0.68] 

[50, 60) 
(18.6%) 

0.69 
[0.66, 0.73] 

0.63 
[0.57, 0.67] 

0.93 
[0.91, 0.95] 

0.81 
[0.76, 0.85] 

0.66 
[0.64, 0.67] 

[60, 90] 
(14.6%) 

0.67 
[0.63, 0.71] 

0.50 
[0.44, 0.55] 

0.93 
[0.91, 0.95] 

0.81 
[0.76, 0.87] 

0.64 
[0.62, 0.66] 

Sex 

Female 
(63.1%) 

0.72 
[0.70, 0.74] 

0.61 
[0.58, 0.64] 

0.94 
[0.93, 0.95] 

0.84 
[0.81, 0.86] 

0.67 
[0.66, 0.68] 

Male 
(36.9%) 

0.71 
[0.68, 0.73] 

0.59 
[0.55, 0.63] 

0.93 
[0.91, 0.94] 

0.83 
[0.80, 0.86] 

0.67 
[0.66, 0.69] 

Race and 
ethnicity 

American 
Indian or 
Alaska 
Native 
(1.1%) 

0.62 
[0.48, 0.76] 

0.51** 
[0.38, 0.71] 

0.93 
[0.83, 1.00] 

0.88** 
[0.75, 1.00] 

0.67 
[0.60, 0.74] 

Asian 
(12.6%) 

0.74 
[0.70, 0.78] 

0.59 
[0.53, 0.65] 

0.95 
[0.93, 0.97] 

0.85 
[0.79, 0.90] 

0.67 
[0.65, 0.70] 

Black or 
African 

American 
(6.1%) 

0.73 
[0.67, 0.79] 

0.56 
[0.50, 0.68] 

0.92 
[0.89, 0.95] 

0.74 
[0.68, 0.86] 

0.68 
[0.65, 0.71] 

Hispanic 
or Latino 
(43.4%) 

0.72 
[0.70, 0.74] 

0.58 
[0.54, 0.61] 

0.94 
[0.93, 0.95] 

0.83 
[0.80, 0.87] 

0.68 
[0.67, 0.69] 
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Native 
Hawaiin 

or Pacific 
Islander 
(1.6%) 

0.66 
[0.54, 0.77] 

0.57 
[0.41, 0.70] 

0.98 
[0.95, 1.00] 

0.80 
[0.68, 0.90] 

0.62 
[0.56, 0.67] 

White 
(31.3%) 

0.70 
[0.68, 0.73] 

0.60 
[0.56, 0.64] 

0.92 
[0.90, 0.93] 

0.81 
[0.77, 0.84] 

0.66 
[0.65, 0.68] 

Not 
specified 
(3.9%) 

0.68 
[0.61, 0.76] 

0.63 
[0.53, 0.73] 

0.95 
[0.91, 0.98] 

0.85 
[0.77, 0.93] 

0.65 
[0.62, 0.68] 

Fitzpatrick 
skin type 

Type  I 
(0.2%) 

0.56  
[0.22, 0.89] 

0.67** 
[0.50, 1.00] 

0.67  
[0.33, 0.89] 

0.83** 
[0.67, 1.00] 

0.52  
[0.33, 0.71] 

Type  II 
(10.2%) 

0.69  
[0.64, 0.74] 

0.62 
[0.54, 0.70] 

0.91 
[0.89, 0.94] 

0.80 
[0.73, 0.86] 

0.66  
[0.63, 0.68] 

Type  III 
(64.2%)  

0.72  
[0.70, 0.74] 

0.61 
[0.58, 0.63] 

0.94  
[0.93, 0.95] 

0.84 
[0.82, 0.87] 

0.67  
[0.67, 0.68] 

Type  IV 
(19.3%)  

0.71  
[0.68, 0.75] 

0.56 
[0.49, 0.61] 

0.93  
[0.91, 0.94] 

0.79 
[0.72, 0.84] 

0.68 
 [0.66, 0.70] 

Type  V 
(2.7%) 

0.79 
 [0.71, 0.87] 

0.68** 
[0.60, 0.82] 

0.94 
 [0.89, 0.98] 

0.80** 
[0.74, 0.95] 

0.68 
 [0.63, 0.72] 

Type  VI 
(0.0%) 1.00* 1.00* ** 1.00* 1.00* ** 0.75* 

Unknown 
(3.4%) 

0.67 
[0.57, 0.75] 

0.55 
[0.45, 0.70] 

0.95 
[0.91, 0.99] 

0.82 
[0.73, 0.94] 

0.65 
[0.60, 0.70] 

* : There was only 1 case labeled as Type VI, so confidence intervals were not meaningful. 
**: At least ten of the 26 conditions were absent from this subanalysis, resulting in an ill-defined 
sensitivity for those conditions and an unreliable estimate for average sensitivity. 
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Supplementary Information 

Supplementary Methods 

Labeler onboarding and certification 
In addition to formal board certification, all study participants (dermatologists, PCPs, 
and NPs) underwent an onboarding process to familiarize with the grading tools. In 
particular, the dermatologists comprising the reference standard graded 147 cases 
randomly sampled from the development set as an assessment to ensure consistent 
grading. For each case, their leading diagnosis was compared to the aggregated 
opinion of a panel of three experienced U.S. board-certified dermatologists, and only 
dermatologists who had an top-3 accuracy exceeding 60% participated in determining 
the reference standard for the validation set. This threshold was chosen based on the 
statistics of dermatologist grader accuracy, so as to leave room for disagreement in 
complex cases while ensuring a minimum consistency in grading following guidelines 
(e.g. specificity of diagnoses) and familiarity with the tool. 

Reference standard voting procedure and reproducibility 
Here, we detail the voting procedure​44​ used to improve reproducibility of our 

reference standard (Supplementary Fig. 8). First, each dermatologist provided up to 
three differential diagnoses and accompanying confidences values in the range [1, 5] for 
each of the diagnosis. Next, each diagnosis was mapped to a condition. If duplicates 
occurred (i.e. multiple diagnoses were mapped to the same condition), the highest 
confidence was retained. The relative ranks of the mapped conditions were used to rank 
the conditions into a differential diagnosis (i.e. primary, secondary, and tertiary 
diagnosis). Each mapped condition was then assigned a weight: the inverse of the rank. 
If multiple mapped conditions shared the same confidence, then the weight was evenly 
distributed across the conditions. Answers from the dermatologists were then 
aggregated to form the reference standard, by summing up the weights, before limiting 
the skin condition classes to 27 (26 conditions plus “Other”) and normalizing their 
weights to sum to 1. ​Distribution of the number of conditions in the differential diagnosis 
for each set is shown in Supplementary Fig. 4. Detailed analysis of the secondary and 
tertiary diagnoses that are provided alongside every primary diagnosis is shown in 
Supplementary Fig. 5. 

To investigate the reproducibility of the reference standard, for a subset of 620 
cases in validation set B, three other random dermatologists from the same pool (who 
had not seen the case previously) graded the cases independently, following the exact 
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same labeling procedure as before. Reference standard differential diagnoses from the 
two panels of three dermatologists had an AO of 0.61 and an agreement of 0.71 for the 
primary diagnosis (compared to an AO of 0.51 and an agreement of 0.58 between two 
random individual dermatologists, one per panel), when considered in the space of 421 
mapped conditions. Within the space of 27 conditions handled by DLS, the two panels 
had an AO of 0.67 and an agreement of 0.73 (compared to an AO of 0.56 and an 
agreement of 0.62 between two random individual dermatologists, one per panel). 
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Supplementary Figures 

a 

 

b 
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Supplementary Fig. 1 | Performance of the deep learning system (DLS) and clinicians in 
cases where at least two out of the three dermatologists determining the reference 
standard agreed on the primary diagnosis, broken down for each of the 26 categories of 
skin conditions.​ ​a​, Top-1 and top-3 sensitivity of the DLS on validation set A. ​b​, Top-1 and 
top-3 sensitivity of the DLS and three types of clinicians: dermatologists (Derm), primary care 
physicians (PCP), and nurse practitioners (NP). The number of cases per condition are 
presented in Supplementary Table 3. The rightmost columns indicate the average sensitivity for 
the 26 conditions. Error bars indicate 95% confidence intervals.  
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Supplementary Fig. 2 | Performance of the deep learning system (DLS) and clinicians in 
cases where all three dermatologists determining the reference standard agreed on the 
primary diagnosis, broken down for each of the 26 categories of skin conditions.​ ​a​, Top-1 
and top-3 sensitivity of the DLS on validation set A. ​b​, Top-1 and top-3 sensitivity of the DLS 
and three types of clinicians: dermatologists (Derm), primary care physicians (PCP), and nurse 
practitioners (NP). The number of cases per condition are presented in Supplementary Table 3. 
The empty bars for the DLS and all clinicians for allergic contact dermatitis are due to the lack of 
cases that achieved full consensus for that condition. The rightmost columns indicate the 
average sensitivity for the 26 conditions. Error bars indicate 95% confidence intervals.  
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Supplementary Fig. 3 | Labeling tool interface.​ Questions prompts (Supplementary Table 5) 
are displayed in the left panel, whereas clinical metadata (Supplementary Table 1) are shown in 
the top right panel and images (up to six per case) are shown in the bottom right panel. Any 
image could be panned, zoomed, and magnified for closer review. 
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Supplementary Fig. 4 | Histogram of the number of conditions in the reference standard 
differential diagnoses.​ Within each set (development and validation set A and B), the 
differential diagnoses has a median length of 2 and a 75​th​ percentile length of 3. The 25​th 
percentile length was slightly different at 1, 2, 2 for the development set, validation set A, and 
validation set B, respectively.  
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Supplementary Fig. 5 | Relationship between the primary, secondary, and tertiary 
diagnoses in the reference standard differential diagnosis in validation set A.​ ​a​, 
Co-occurrence matrix representing the secondary diagnosis for each primary diagnosis. ​b​, 
Co-occurrence matrix representing the tertiary diagnosis for each primary diagnosis. Eczema 
and psoriasis frequently appear together in the differential, and the same applies for other pairs 
like eczema and tinea, melanocytic nevus and Seborrheic keratosis / irritated seborrheic 
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keratosis (SK/ISK), and acne and folliculitis. These pairs share visual similarities which can 
account for their co-occurrence in the same differential diagnosis. 
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Supplementary Fig. 6 | Importance of each individual clinical metadata to the deep 
learning system (DLS).​ For each clinical metadata, its values are permuted across validation 
set A examples, and the effect of this permutation on the top-1 accuracy using the same trained 
DLS are shown. 
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Supplementary Fig. 7 | Effect of training dataset size on the performance of the deep 
learning system (DLS).​ For each experiment, a random subset of the cases was used for 
training. This DLS was then evaluated on the validation set A and its change in the top-1 
accuracy relative to the original DLS (trained with all available training data) is shown. Error bars 
indicate 95% confidence intervals across all cases in validation set A.  
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Supplementary Fig. 8 | Illustration of the establishment of reference standard differential 
diagnosis.​ In this example, each of the three dermatologists reviewed the case independently 
and provided a list of diagnoses, each with a confidence value ranging from 1 to 5.  Weight for 
each diagnosis (mapped to the 421 list) was determined as the inverse of the rank within each 
labeler. For the first labeler, since there was a tie between eczema and psoriasis, weights for 
those were adjusted to evenly distribute between these two ((½ + ⅓ ) / 2 = 0.42). Answers from 
different labelers were then aggregated by summing up the weights, before limiting the skin 
condition classes to 27 and normalizing their weights to sum to 1. 
  

56 



 
 

a 

 

 

 

 

59 year old (y.o.) Male, White 
Self-reported skin problem: Rash 
Duration: More than one year, always 
present 
Symptoms: Bothersome in 
appearance, bleeding, increasing in 
size 
Review of system (ROS): No 
fever/chills (F/C), fatigue, joint pain, 
mouth sores, or shortness of breath 
Drugs: Treated by prescription (Rx) or 
over-the-counter (OTC) 
Medical history: No history of skin 
cancer, melanoma, eczema, psoriasis, 
or biopsy 
Family history: Psoriasis 
Drug allergies: None 
Medication: None 
Follow-up case?: No  

Reference 
standard 

DLS  
(top 3) 

DLS (growth 
subgroup) 

NP 
(missed) 

NP 
(missed) 

PCP (tied 1​st 
diagnosis) 

PCP 
(missed) 

Derm Derm 
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BCC; 
SCC/SCCIS; 
Scar condition 

BCC: 0.84; 
Scar condition: 
0.06; 
SCC/SCCIS: 
0.05 

Malignant: 1.0; 
Benign: 0.0 

Other 
(hypertrophic 
skin); 
Scar condition 

AK; 
Other (skin 
lesion); 
Psoriasis 

BCC / 
SCC/SCCIS; 
Melanoma 

Psoriasis BCC BCC 

b  63 y.o. Male 
Self-reported skin problem: Growth or 
Mole 
Duration: Three to twelve months, 
always present 
Symptoms: Increasing in size, itching, 
burning, painful 
ROS: No F/C, fatigue, joint pain, 
mouth sores, or shortness of breath 
Drugs: Treated by Rx or OTC 
Medical history: No history of skin 
cancer, melanoma, eczema, psoriasis, 
or biopsy 
Family history: Skin cancer 
Drug allergies: None 
Medication: None 
Follow-up case?: No 

Reference 
standard 

DLS  
(top 3) 

DLS (growth 
subgroup) 

NP 
(2​nd​ diagnosis) 

NP (tied 1​st 
diagnosis) 

PCP 
(missed) 

PCP 
(missed) 

Derm Derm 

SCC/SCCIS; 
BCC 

SCC/SCCIS: 
0.74; 
BCC: 0.19; 
Actinic 
keratosis: 0.04 

Malignant: 
0.94; 
Benign: 0.06 

BCC; 
SCC/SCCIS; 
Melanoma 

Other (skin 
lesion) / 
SCC/SCCIS; 
BCC 

Cannot 
diagnose 

Other 
(pyoderma) 

SCC/SCCIS; 
BCC 

SCC/SCCIS 

c  

 

61 y.o. Female, Hispanic or Latino 
Self-reported skin problem: Rash 
Duration: One to four weeks, always 
present 
Symptoms: Itching 
ROS: No F/C, fatigue, joint pain, 
mouth sores, or shortness of breath 
Drugs: Treated by Rx or OTC 
Medical history: No history of skin 
cancer, melanoma, eczema, psoriasis, 
or biopsy 
Family history: Skin cancer 
Drug allergies: None 
Medication: None 
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Follow-up case?: No 

Reference 
standard 

DLS  
(top 3) 

DLS 
(erythematosq
uamous and 

papulosquamo
us subgroup) 

NP 
(missed) 

NP 
(missed) 

PCP (tied 1​st 
diagnosis) 

PCP 
(missed) 

Derm Derm 

Tinea Tinea: 0.95; 
Other: 0.03; 
Eczema: 0.02 

Infectious: 
0.98; 
Non-infectious: 
0.02 

Eczema / 
Other (Chronic 
contact 
dermatitis); 
Psoriasis 

Other 
(Generalized 
granuloma 
annulare) 

Other 
(Granuloma 
annulare) /  
Tinea 
 

Eczema Tinea; 
Other 
(Granuloma 
annulare) 

Tinea 

d 

29 y.o. Male, Native Hawaiian or 
Pacific Islander 
Duration: Three to twelve months, 
always present 
Symptoms: Bothersome in 
appearance, increasing in size, itching 
ROS: No F/C, fatigue, joint pain, 
mouth sores, or shortness of breath 
Drugs: Treated by Rx or OTC 
Medical history: No history of skin 
cancer, melanoma, eczema, psoriasis, 
or biopsy 
Family history: Skin cancer 
Drug allergies: None 
Medication: None 
Follow-up case?: Yes 
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Patient adhered to treatments: Yes 
Condition after treatments: Not 
changed 
 

Reference 
standard 

DLS  
(top 3) 

DLS (hair loss 
subgroup) 

NP 
(3​rd​ diagnosis) 

NP 
(missed) 

PCP 
(2​nd​ diagnosis) 

PCP Derm Derm 

AA AA: 0.89; 
Other: 0.05; 
AGA: 0.03 

AA: 0.97; 
AGA: 0.03 

AGA; 
Other 
(Alopecia 
localis); 
AA 

AGA AGA; 
AA 

AA AA AA; 
Other 
(trichotillomani
a) 
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e 

 

 

 

26 y.o. Female, Hispanic or Latino 
Self-reported skin problem: Hair loss 
Duration: More than five years, always 
present 
Symptoms: Bothersome in 
appearance, itching 
ROS: No F/C, fatigue, joint pain, 
mouth sores, or shortness of breath 
Drugs: Has not been treated by Rx or 
OTC 
Medical history: No history of skin 
cancer, melanoma, eczema, psoriasis, 
or biopsy 
Family history: Skin cancer, eczema 
Drug allergies: None 
Medication: OTC 
Follow-up case?: No 

Reference 
standard 

DLS  
(top 3) 

DLS (hair loss 
subgroup) 

NP 
(missed, 

non-specific) 

NP 
(missed, 

non-specific) 

PCP 
(tied 2​d 

diagnosis) 

PCP 
(missed) 

Derm Derm 

AGA; 
AA; 
Other 

AGA: 0.65; 
Other: 0.25; 
Seborrheic 
Dermatitis: 
0.05 

AGA: 0.96; 
AA: 0.04 
 

Other (Diffuse 
alopecia) 

Other 
(Alopecia) 

Other 
(Telogen 
effluvium); 
AA / 
AGA 

AA AGA; 
Other 
(Drug-related 
alopecia) 

AGA 

Supplementary Fig. 9 |  All the images and metadata for examples shown in Fig. 3. 
Abbreviations for diagnoses follow those from Fig. 3: basal cell carcinoma (BCC), squamous cell 
carcinoma (SCC/SCCIS), Alopecia Areata (AA), and Androgenetic Alopecia (AGA). Some 
images were cropped to zoom in on the condition for clarity.  
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Supplementary Tables 

Supplementary Table 1 | Clinical metadata used in this study 

Name Description Possible values  

Self-reported demographic information 

Age The age of the patient in 
years, at the time the case 
was submitted. 

A float value ranging from 18 to 90. Values larger than 
90 are capped at 90. 

Sex The sex of the patient. One of: [Female | Male | Other | Unknown] 

Race and 
ethnicity 

The race/ethnicity of the 
patient. 

One of: [American Indian or Alaska Native | Asian | 
Black or African American | Hispanic or Latino | Native 
Hawaiian or Pacific Islander | White | Neither Hispanic 
Nor Latino | Not specified | Unknown] 

Disease state 

Self-reported 
skin problem 

The high level skin 
problem the patient is 
seeking help for. 

One of: [Acne | Growth or mole | Hair loss | Hair or nail 
problem | Hair problem | Nail problem | Pigmentary 
problem | Rash | Other | Unknown] 

Symptoms Any symptoms perceived 
by the patient. 

A list of 8 symptoms (bothersome in appearance, 
bleeding, increasing in size, darkening, itching, 
burning, painful, ​none of the above)​ with each 
symptom being one of: [Yes | No | Unknown]. 

Signs Any medical signs 
perceived by the patient. 

A list of 7 signs (f​ever, chills, fatigue, joint pain, mouth 
sores, shortness of breath, none of the above) with 
each sign being one of​ [Yes | No | Unknown]. 

Duration The time that the skin 
problem has persisted. 

One of: [One day | Less than one week | One week  | 
Two weeks |  One to four weeks | One month | One to 
three months |  Three months | Three to twelve 
months | Six months | One year | More than one year | 
More than five years |  Since childhood | Since birth | 
Unknown] 

Frequency Frequency of occurrence 
of the skin problem. 

One of: [Always present | Comes and goes | 
Unknown] 

Medical history  
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Personal history Personal medical history. A list of four aspects of the personal history (skin 
cancer, melanoma, eczema, psoriasis) with each 
being one of [Yes | No | Unknown]. 

Family history Family medical history. A list of four aspects of the family history (skin cancer, 
melanoma, eczema, psoriasis) with each being one of 
[Yes | No | Unknown]. 

Patient state 

Allergy Medications the patient is 
allergic to. 

A list of 6 allergies (penicillin, cephalosporin, sulfa, 
tetracycline, aspirin, other) with each being one of 
[Yes | No | Unknown]. 

Drug If the patient is currently 
taking any medications. 

One of [Yes | No | Unknown]. 

Pregnancy If the patient is pregnant. One of [Yes | No | Unknown]. 

Nursing If the patient is nursing. One of [Yes | No | Unknown]. 

Medical problem Whether the patient 
currently has any medical 
problems. 

One of [Yes | No | Unknown]. 

Previous treatment state 

Follow-up case If this is a follow up case. One of [Yes | No | Unknown]. 

Biopsy If there has been a 
previous biopsy. 

One of [Yes | No | Unknown]. 

Past medication  Whether the patient used 
medications for the skin 
problem.  

A list of two past medications (prescription drugs, over 
the counter drugs) with each being one of [Yes | No | 
Unknown]. 

Patient adhered 
to treatments 

Whether the patient is 
following the treatment If 
the patient received 
treatment before. 

One of: [No | Partially | Yes | Unknown] 

Condition after 
treatments 

Progression of the skin 
problem If the patient 
received treatment before. 

One of: [Improved | Not changed | Worsened | 
Unknown]  
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Supplementary Table 2 | Top-1 and top-3 diagnostic accuracy for the three types of 
clinicians (dermatologists, Derm; primary care physicians, PCP; and nurse practitioners, 
NP) on validation set B.​ Each clinician graded approximately one-third of the cases (number of 
cases graded: median = 321, range 320-322). For each clinician, performance of the deep 
learning system (DLS) is also reported on the same cases graded by that clinician (shaded in 
gray). Bold indicates the higher of the two: clinician or DLS based on each evaluation metric. In 
particular, Accuracy​any​ measures the agreement of the top-1 and top-3 diagnoses with ​any​ of the 
panel of three dermatologists comprising the reference standard.  

Clinician 
Type / ID 

Top 1 Top 3 Average 
Overlap 

(AO) Accuracy Accuracy​any Accuracy Accuracy​any 

Clinician DLS Clinician DLS Clinician DLS Clinician DLS Clinician DLS 

Derm 1 0.58 0.67 0.72 0.79 0.68 0.92 0.79 0.97 0.54 0.64 

Derm 2 0.65 0.66 0.83 0.75 0.80 0.86 0.92 0.93 0.62 0.61 

Derm 3 0.65 0.68 0.81 0.85 0.78 0.91 0.91 0.97 0.59 0.64 

Derm 4 0.61 0.66 0.75 0.80 0.69 0.91 0.82 0.96 0.54 0.63 

Derm 5 0.64 0.68 0.74 0.80 0.80 0.90 0.88 0.94 0.60 0.62 

Derm 6 0.64 0.67 0.76 0.79 0.73 0.89 0.84 0.97 0.56 0.65 

PCP 1 0.43 0.70 0.54 0.81 0.66 0.92 0.80 0.97 0.46 0.67 

PCP 2 0.50 0.66 0.63 0.76 0.74 0.86 0.86 0.93 0.54 0.61 

PCP 3 0.44 0.65 0.61 0.81 0.53 0.91 0.70 0.97 0.43 0.63 

PCP 4 0.48 0.68 0.62 0.80 0.50 0.91 0.63 0.96 0.42 0.64 

PCP 5 0.44 0.66 0.58 0.78 0.51 0.89 0.65 0.95 0.43 0.63 

PCP 6 0.39 0.66 0.54 0.80 0.65 0.89 0.81 0.96 0.47 0.63 

NP 1 0.42 0.70 0.58 0.81 0.53 0.91 0.67 0.96 0.44 0.65 

NP 2 0.36 0.63 0.45 0.73 0.55 0.87 0.72 0.93 0.42 0.61 

NP 3 0.42 0.68 0.56 0.84 0.58 0.91 0.73 0.97 0.44 0.64 

NP 4 0.38 0.67 0.55 0.78 0.39 0.90 0.56 0.94 0.36 0.64 

NP 5 0.42 0.69 0.51 0.83 0.60 0.91 0.72 0.96 0.43 0.64 

NP 6 0.44 0.64 0.59 0.78 0.65 0.88 0.79 0.97 0.47 0.62 
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Supplementary Table 3 | Number of cases per category of skin condition, filtered by 
different levels of agreement on the primary diagnosis among dermatologists 
determining the reference standard. 

 
Condition name 

Validation set A Validation set B 

No. of 
cases 

No. of cases with 
agreement by ≥2 

dermatologists (%) 

No. of cases with 
agreement by all 3 

dermatologists 
(%) 

No. of 
cases 

No. of cases with 
agreement by ≥2 

dermatologists (%) 

No. of cases with 
agreement by all 
3 dermatologists 

(%) 

Acne 428 381 (89.0%) 267 (62.4%) 47 36 (76.6%) 21 (44.7%) 

Actinic Keratosis  57 36 (63.2%) 18 (31.6%) 40 23 (57.5%) 9 (22.5%) 

Allergic Contact Dermatitis 49 27 (55.1%) 2 (4.1%) 36 15 (41.7%) 0 (0.0%) 

Alopecia Areata 98 90 (91.8%) 73 (74.5%) 39 35 (89.7%) 31 (79.5%) 

Androgenetic Alopecia 56 46 (82.1%) 23 (41.1%) 36 29 (80.6%) 16 (44.4%) 

Basal Cell Carcinoma 48 43 (89.6%) 27 (56.2%) 31 27 (87.1%) 17 (54.8%) 

Cyst 97 80 (82.5%) 47 (48.5%) 37 29 (78.4%) 16 (43.2%) 

Eczema 719 565 (78.6%) 229 (31.8%) 71 38 (53.5%) 11 (15.5%) 

Folliculitis 111 64 (57.7%) 20 (18.0%) 43 21 (48.8%) 6 (14.0%) 

Hidradenitis 47 41 (87.2%) 31 (66.0%) 37 32 (86.5%) 23 (62.2%) 

Lentigo 37 25 (67.6%) 12 (32.4%) 36 24 (66.7%) 12 (33.3%) 

Melanocytic Nevus 195 168 (86.2%) 96 (49.2%) 40 29 (72.5%) 16 (40.0%) 

Melanoma 27 15 (55.6%) 4 (14.8%) 22 13 (59.1%) 4 (18.2%) 

Post Inflammatory 
Hyperpigmentation 

66 37 (56.1%) 8 (12.1%) 38 19 (50.0%) 4 (10.5%) 

Psoriasis 365 316 (86.6%) 199 (54.5%) 49 32 (65.3%) 22 (44.9%) 

SCC/SCCIS 38 39 (102.6%) 12 (31.6%) 35 33 (94.3%) 12 (34.3%) 

SK/ISK 224 203 (90.6%) 118 (52.7%) 44 39 (88.6%) 22 (50.0%) 

Scar Condition 69 55 (79.7%) 35 (50.7%) 38 29 (76.3%) 20 (52.6%) 

Seborrheic Dermatitis 112 82 (73.2%) 31 (27.7%) 43 27 (62.8%) 11 (25.6%) 

Skin Tag 73 68 (93.2%) 39 (53.4%) 35 34 (97.1%) 20 (57.1%) 

Stasis Dermatitis 30 18 (60.0%) 6 (20.0%) 29 17 (58.6%) 6 (20.7%) 

Tinea 38 27 (71.1%) 14 (36.8%) 35 26 (74.3%) 13 (37.1%) 

Tinea Versicolor 37 31 (83.8%) 17 (45.9%) 36 30 (83.3%) 16 (44.4%) 

Urticaria 39 28 (71.8%) 14 (35.9%) 38 27 (71.1%) 13 (34.2%) 

Verruca vulgaris 88 82 (93.2%) 53 (60.2%) 38 33 (86.8%) 22 (57.9%) 

Vitiligo 78 70 (89.7%) 51 (65.4%) 38 34 (89.5%) 25 (65.8%) 

Other 915 849 (92.8%) 390 (42.6%) 142 110 (77.5%) 33 (23.2%) 
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Supplementary Table 4 | Top-1 and top-3 sensitivity averaged across all the skin 
conditions categories, and with different exclusions.​ Allergic Contact Dermatitis (ACD) and 
Post-inflammatory Hyperpigmentation (PIH) are included in this analysis because of the low 
sensitivity for these conditions by both the deep learning system (DLS) and the three types of 
clinicians (dermatologists, Derms; primary care physicians, PCPs; and nurse practitioners, NPs) 
on validation set B. Bold indicates the highest value within each row and each evaluation metric 
for validation set B. 

Conditions 
included in the 
average 

Average Top-1 Sensitivity Average Top-3 Sensitivity 

DLS Derm PCP NP DLS Derm PCP NP 

All 27 conditions 0.57 0.52 0.36 0.33 0.82 0.64 0.50 0.45 

26 conditions 
(excludes 
“Other”) 

0.57 0.51 0.35 0.32 0.82 0.64 0.49 0.44 

25 conditions 
(excludes ACD 
and PIH) 

0.60 0.55 0.38 0.35 0.84 0.68 0.53 0.49 

24 conditions 
(excludes ACD, 
PIH, and 
“Other”) 

0.60 0.55 0.38 0.35 0.84 0.68 0.53 0.48 
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Supplementary Table 5 | Labeling tool prompts and instructions.  

Question Possible answers (underlined), with explanations if 
applicable 

Are multiple conditions present in this 
case? 

Yes​*: if more than one condition related to this patient’s 
chief complaint is present  
Possibly​*: if more than one condition may be present 
No​: if there is a single skin condition 

Can you describe a differential given the 
case? 

Yes​: if one can provide a diagnosis. 
No​*: if one cannot provide any diagnosis. This can be 
due to poor image quality, minimum pathology, 
insufficient medical information, etc. 

Please 
provide your 
top three 
differential 
diagnosis: 
 

What is the condition? SNOMED texts synonyms​: an autocomplete menu that 
contains all synonyms for SNOMED entries pertaining to 
cutaneous disease is available to select from. If there are 
several variations of the condition, use the most specific 
condition that applies to the case. If none found, then: 
Free text​: an additional text field is provided for labelers 
to enter any free-form text. 

Confidence of diagnosis 5​: most certain about the condition. 
4​:  
3​:  
2​:  
1​: least certain about the condition. 

 ​* If these answers are selected, the remaining questions are skipped.  
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Supplementary Table 6 | Full list of 421 skin conditions that answers from 
dermatologists, PCPs, and NPs were mapped to.​ The top 26 conditions on which the 
DLS was trained and evaluated on are highlighted in bold. The remaining 395 
conditions (in aggregate comprising roughly 20% of the cases in this dataset) were 
mapped to “Other” for the purposes of this study. 
A-C D-H I-M N-P R-Z 

Abscess 
Acanthoma fissuratum 
Acanthosis nigricans 
Accessory nipple 
Acne 
Acne keloidalis 
Acquired digital 
fibrokeratoma 
Acral keratosis 
Acral peeling skin syndrome 
Acrocyanosis 
Acrodermatitis atrophicans 
chronica 
Acropustulosis of infancy 
Actinic Keratosis 
Actinic granuloma 
Acute generalised 
exanthematous pustulosis 
Adnexal neoplasm 
Adult onset still disease 
Albinism 
Allergic Contact 
Dermatitis 
Alopecia Areata 
Alopecia mucinosa 
Alopecia neurotica 
Amyloidosis of skin 
Anagen effluvium 
Androgenetic Alopecia 
Anetoderma 
Angina bullosa 
hemorrhagica 
Angioedema 
Angiofibroma 
Angiokeratoma of skin 
Angiolymphoid hyperplasia 
with eosinophilia 
Angiosarcoma of skin 
Animal bite - wound 
Apocrine cystadenoma 
Arsenical keratosis 
Arterial ulcer 
Arteriovenous malformation 
Atrophic glossitis 
Atrophoderma 
Atrophoderma vermiculatum 
Atypical Nevus 
Atypical fibroxanthoma of 
skin 
B-Cell Cutaneous 
Lymphoma 
Basal Cell Carcinoma 
Beau's lines 
Becker's nevus 

Deep fungal infection 
Dental fistula 
Dermatitis herpetiformis 
Dermatitis of anogenital 
region 
Dermatofibroma 
Dermatofibrosarcoma 
protuberans 
Dermatomyositis 
Dermatosis caused by lice 
Dermoid cyst of skin 
Desmoplastic 
trichoepithelioma 
Diabetic dermopathy 
Diabetic ulcer 
Digital Myxoid Cyst 
Digital mucous cyst 
Dissecting cellulitis of scalp 
Dowling-degos syndrome 
Drug Rash 
Eccrine carcinoma of skin 
Ecthyma 
Ecthyma gangrenosum 
Eczema 
Edema bulla 
Epidermal nevus 
Epidermolysis bullosa 
Erosive pustular dermatosis 
Eruptive xanthoma 
Erysipelas 
Erythema ab igne 
Erythema annulare 
centrifugum 
Erythema dyschromicum 
perstans 
Erythema elevatum 
diutinum 
Erythema gyratum repens 
Erythema marginatum 
Erythema migrans 
Erythema multiforme 
Erythema nodosum 
Erythrasma 
Erythromelalgia 
Erythromelanosis follicularis 
faciei et colli 
Fat necrosis 
Fibrofolliculoma 
Flagellate erythema 
Flegels disease 
Flushing 
Focal epithelial hyperplasia 
of skin 
Folliculitis 
Folliculitis decalvans 

Ichthyosis 
Idiopathic exfoliative cheilitis 
Idiopathic guttate 
hypomelanosis 
IgA pemphigus 
Impetigo 
Incontinentia pigmenti 
Induced hypopigmentation 
Infected eczema 
Infected skin ulcer 
Inflammatory linear 
verrucous epidermal nevus 
Inflicted skin lesions 
Ingrown hair 
Injection site disorder 
Insect Bite 
Interstitial granulomatous 
dermatitis 
Intertrigo 
Inverted follicular keratosis 
Irritant Contact Dermatitis 
Juvenile xanthogranuloma 
Kaposi's sarcoma of skin 
Keratoderma 
Keratolysis exfoliativa 
Keratosis pilaris 
Knuckle pads 
Lentigo 
Leprosy 
Leukemia cutis 
Leukocytoclastic Vasculitis 
Leukonychia 
Leukoplakia of skin 
Lichen Simplex Chronicus 
Lichen nitidus 
Lichen planopilaris 
Lichen planus/lichenoid 
eruption 
Lichen sclerosus 
Lichen spinulosus 
Lichen striatus 
Lichenoid keratosis 
Lichenoid myxedema 
Linear IgA disease 
Lipoatrophy 
Lipodermatosclerosis 
Lipoid proteinosis 
Lipoma 
Lipsch303274tz ulcer 
Livedo reticularis 
Livedoid vasculopathy 
Lobomycosis 
Local infection of wound 
Longitudinal melanonychia 
Lymphadenopathy 

Nail dystrophy due to 
trauma 
Nasal polyp 
Nasolabial dyssebacia 
Necrobiosis lipoidica 
Necrolytic acral erythema 
Necrotizing fasciitis 
Neuralgia paresthetica 
Neutrophilic eccrine 
hidradenitis 
Nevus anemicus 
Nevus comedonicus 
Nevus depigmentosus 
Nevus lipomatosus 
cutaneous superficialis 
Nevus of Ito 
Nevus of Ota 
Nevus sebaceous 
Nevus spilus 
Nodular vasculitis 
Non-melanin pigmentation 
due to exogenous 
substance (disorder) 
Notalgia paresthetica 
O/E - ecchymoses present 
Ochronosis 
Onychocryptosis 
Onychogryphosis 
Onycholysis 
Onychomadesis 
Onychomalacia 
Onychomatricoma 
Onychomycosis 
Onychopapilloma 
Onychorrhexis 
Onychoschizia 
Oral fibroma 
Osteoarthritis 
Osteoma 
Osteoma cutis 
Otitis externa 
Paget disease 
Palisaded neutrophilic 
granulomatous dermatitis 
Palmar pit 
Papilloma of skin 
Parapsoriasis 
Paronychia 
Pearly penile papules 
Pemphigoid gestationis 
Pemphigus foliaceus 
Pemphigus paraneoplastica 
Pemphigus vulgaris 
Perforating dermatosis 
Perichondritis of auricle 

RMSF - Rocky Mountain 
spotted fever 
Radiation dermatitis 
Raynaud's phenomenon 
Relapsing polychondritis 
Remove from labeling tool 
Retention hyperkeratosis 
Reticular erythematous 
mucinosis 
Reticulate erythematous 
mucinosis 
Reticulohistiocytosis 
Rheumatoid nodule 
Rhytides 
Rosacea 
SCC/SCCIS 
SJS/TEN 
SK/ISK 
Scabies 
Scar Condition 
Scleredema 
Sclerodactyly 
Sebaceous adenoma of skin 
Sebaceous carcinoma 
Sebaceous hyperplasia 
Seborrheic Dermatitis 
Skin Tag 
Skin and soft tissue atypical 
mycobacterial infection 
Skin atrophy 
Skin changes due to 
malnutrition 
Skin lesion in drug addict 
Skin striae 
Small plaque parapsoriasis 
Small vessel thrombosis of 
skin 
Sneddon-Wilkinson disease 
Stasis Dermatitis 
Subungual fibroma 
Sweet syndrome 
Symmetrical 
dyschromatosis of 
extremities 
Syphilis 
TMEP - telangiectasia 
macularis eruptiva perstans 
Tattoo 
Telangiectasia disorder 
Telogen effluvium 
Thrombophlebitis 
Tinea 
Tinea Versicolor 
Torus palatinus 
Trachyonychia 
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Benign neoplasm of nail 
apparatus 
Benign neural tumor 
Benign salivary gland tumor 
Blistering distal dactylitis 
Blue sacral spot 
Bowenoid papulosis 
Brachioradial pruritus 
Breast cancer 
Bullosis diabeticorum 
Bullous Pemphigoid 
Burn of skin 
Bursitis 
Cafe au lait macule 
Calcinosis cutis 
Calciphylaxis cutis 
Candida 
Canker sore 
Carotene pigmentation of 
skin 
Cellulitis 
Central centrifugal cicatricial 
alopecia 
Chancroid 
Chemical leukoderma 
Chicken pox exanthem 
Chilblain 
Chondrodermatitis nodularis 
Cicatricial Pemphigoid 
Clavus 
Clear cell acanthoma 
Clubbing of fingers 
Collagenoma 
Colloid milium 
Comedone 
Condyloma acuminatum 
Confluent and reticulate 
papillomatosis 
Congenital alopecia 
Connective tissue nevus 
Crohn disease of skin 
Cutaneous T Cell 
Lymphoma 
Cutaneous capillary 
malformation 
Cutaneous collagenous 
vasculopathy 
Cutaneous larva migrans 
Cutaneous leishmaniasis 
Cutaneous lupus 
Cutaneous lymphadenoma 
Cutaneous metastasis 
Cutaneous myiasis 
Cutaneous neurofibroma 
Cutaneous neuroma 
Cutaneous sarcoidosis 
Cutaneous schistosomiasis 
Cutaneous sporotrichosis 
Cutis laxa 
Cutis verticis gyrata 
Cylindroma of skin 
Cyst 

Fordyce spots 
Foreign body 
Foreign body reaction of the 
skin 
Fox-Fordyce disease 
Frontal fibrosing alopecia 
Ganglion cyst 
Geographic tongue 
Giant cell tumor 
Glomus tumour of skin 
Gout 
Graft versus host disease 
Granular parakeratosis 
Granuloma annulare 
Granuloma faciale 
Granulomatous cheilitis 
Grover's disease 
Hailey Hailey disease 
Hair nevus 
Hair sinus 
Hairy tongue 
Half-and-half nail 
Hand foot and mouth 
disease 
Head lice 
Hemangioma 
Hematoma of skin 
Hemorrhoid 
Hemosiderin pigmentation 
of skin 
Herpes Simplex 
Herpes Zoster 
Hidradenitis 
Hirsutism 
Hordeolum internum 
Hyperhidrosis 
Hypersensitivity 
Hypertrichosis 

Lymphangioma 
Lymphedema 
Lymphomatoid papulosis 
Madarosis 
Malignant cylindroma 
Malignant eccrine 
spiradenoma 
Mastocytoma 
Mastocytosis 
Median rhomboid glossitis 
Melanin pigmentation due to 
exogenous substance 
Melanocytic Nevus 
Melanoma 
Melanotic macule 
Melasma 
Merkel Cell Carcinoma 
Microcystic adnexal 
carcinoma 
Milia 
Miliaria 
Molluscum Contagiosum 
Morphea/Scleroderma 
Morsicatio buccarum 
Mucocele 
Mucocutaneous venous 
malformation 

Perioral Dermatitis 
Periungual fibroma 
Perleche 
Phimosis 
Photodermatitis 
Phrynoderma 
Piezogenic pedal papule 
Pigmented fungiform 
papillae 
Pigmented purpuric eruption 
Pilomatricoma 
Pilonidal cyst 
Pincer nail deformity 
Pinkus tumor 
Pitted keratolysis 
Pityriasis alba 
Pityriasis amiantacea 
Pityriasis lichenoides 
Pityriasis rosea 
Pityriasis rotunda 
Pityriasis rubra pilaris 
Pleomorphic fibroma 
Poikiloderma 
Polymorphous Light 
Eruption 
Porokeratosis 
Porphyria cutanea tarda 
Post Inflammatory 
Hyperpigmentation 
Post-inflammatory 
hypopigmentation 
Pressure ulcer 
Pressure-induced 
dermatosis 
Pretibial myxedema 
Primary cutaneous sarcoma 
Progressive macular 
hypomelanosis 
Prurigo nodularis 
Pruritic urticarial papules 
and plaques of pregnancy 
Pseudocyst of auricle 
Pseudolymphoma 
Pseudopelade 
Psoriasis 
Psychogenic alopecia 
Pterygium of nail 
Puncture wound - injury 
Purpura 
Pyoderma Gangrenosum 
Pyogenic granuloma 

Traction alopecia 
Traumatic bulla 
Traumatic ulcer 
Triangular alopecia 
Trichostasis spinulosa 
Trichotillomania 
Trigeminal trophic syndrome 
Tripe palms 
Tuberculosis of skin and 
subcutaneous tissue 
Ulceration in Behcet 
disease 
Urticaria 
Urticaria multiforme 
Varicose veins of lower 
extremity 
Venous Stasis Ulcer 
Verruca vulgaris 
Viral Exanthem 
Vitiligo 
Warty dyskeratoma 
Wells' syndrome 
Wooly hair 
Xanthoma 
Xerosis 
Yellow nail syndrome 
Zoon's balanitis 
Zosteriform reticulate 
hyperpigmentation 
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Supplementary Table 7 | Hyperparameters for training the deep learning system. 
Image augmentations Image size: 459×459 pixels 

Saturation delta: [0.5597, 1.2749] 
Contrast delta: [0.9997, 1.7705] 
Brightness max delta: 0.1148 
Hue max delta: 0.0251 
Rotation: [-150, 150] (degrees) 
Flipping: horizontal, vertical 

Bounding box augmentations Minimum overlap with any pathologic region: 0.2 
Aspect ratio: [0.9, 1.1] 
Proportion over the original image: [0.05, 1.0] 

Metadata augmentations Dropout rate: 0.1 

Learning rate schedule 
(exponential decay schedule) 

Base rate: 0.001 
Decay rate: 0.99 
Number of epochs per decay: 2.0 

Adam optimizer Decay for the first moment estimates: 0.9 
Decay for the second moment estimates: 0.999 
Epsilon: 0.1 

Batch size 8 

Regularization Prelogits dropout rate: 0.2 
Weight decay: 0.00004 
Batch norm decay: 0.9997 

Loss function Softmax cross-entropy with class-specific weights 

Class weighting Weight for each class is determined as:  / c1 1−s  
Where c is the class counts over the training set, and s is a smoothing 
factor of 0.7. 
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Supplementary Table 8 | Performance of the deep learning system (DLS) and different 
types of clinicians, on validation sets A and B.​ This is similar to Extended Data Table 1, 
except performance was measured by the agreement of the top-1 and top-3 diagnoses with ​any 
of the panel of three dermatologists comprising the reference standard. In other words, whether 
the top k predictions of the DLS or clinician captures the primary diagnosis of any member of 
the panel. For agreement with a differential diagnosis based on the “votes” of the panel, see 
Extended Data Table 1. Numbers in square braces indicate 95% confidence intervals. Bold 
indicates the highest value within each column for validation set B. 

Dataset “Grader” 
Top-1 Top-3 

Accuracy​any Accuracy​any 

Validation set A DLS 0.83 [0.82, 0.84] 0.97 [0.97, 0.98] 

Validation set B  
(enriched subset of set A) 

DLS 0.80 [0.77, 0.82] 0.96 [0.94, 0.97] 

Derm 0.77 [0.75, 0.79]  0.86 [0.84, 0.88] 

PCP 0.59 [0.56, 0.61] 0.74 [0.72, 0.76] 

NP 0.54 [0.52, 0.56] 0.70 [0.68, 0.72] 
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 Supplementary Table 9 | Performance of the deep learning system (DLS), stratified by 
self-reported demographic information (including age, sex, race and ethnicity), and 
Fitzpatrick skin type on validation set A.​ Metrics used are identical to the ones in 
Supplementary Table 8. Numbers in square braces indicate 95% confidence intervals. 

Breakdown Category 
Top-1 Top-3 

Accuracy​any Accuracy​any 

Age 

[18, 30) (29.5%) 0.86 [0.84, 0.88] 0.98 [0.97, 0.99] 

[30, 40) (19.9%) 0.82 [0.79, 0.85] 0.97 [0.96, 0.98] 

[40, 50) (17.3%) 0.82 [0.79, 0.85] 0.98 [0.97, 0.99] 

[50, 60) (18.6%) 0.83 [0.80, 0.85] 0.97 [0.96, 0.98] 

[60, 90] (14.6%) 0.78 [0.75, 0.82] 0.97 [0.95, 0.98] 

Sex 
Female (63.1%) 0.84 [0.83, 0.86] 0.98 [0.97, 0.98] 

Male (36.9%) 0.81 [0.79, 0.83] 0.97 [0.96, 0.98] 

Race and ethnicity 

American Indian or Alaska 
Native (1.1%) 

0.79 [0.64, 0.90] 0.98 [0.93, 1.00] 

Asian (12.6%) 0.84 [0.81, 0.88] 0.98 [0.97, 0.99] 

Black or African American 
(6.1%) 

0.86 [0.81, 0.90] 0.97 [0.95, 0.99] 

Hispanic or Latino (43.4%) 0.83 [0.81, 0.85] 0.98 [0.97, 0.98] 

Native Hawaiin or Pacific 
Islander (1.6%) 

0.74 [0.62, 0.85] 1.00 [1.00, 1.00] 

White (31.3%) 0.82 [0.80, 0.85] 0.97 [0.95, 0.98] 

Not specified (3.9%) 0.84 [0.78, 0.90] 1.00 [1.00, 1.00] 

Fitzpatrick skin type 

Type  I (0.2%) 0.78 [0.56, 1.00] 0.78 [0.56, 1.00] 

Type  II  (10.2%) 0.82 [0.78, 0.86] 0.97 [0.95, 0.99] 

Type  III (64.2%)  0.83 [0.82, 0.85] 0.98 [0.97, 0.98] 

Type  IV (19.3%)  0.83 [0.80, 0.85] 0.97[0.96, 0.98] 

Type  V (2.7%) 0.87 [0.80, 0.93] 0.97 [0.93, 1.00] 

Type  VI (0.0%) 1.00* 1.00* 

Unknown (3.4%) 0.79 [0.72, 0.87] 0.98 [0.95, 1.00] 

* : There was only 1 case labeled as Type VI, so confidence intervals were not meaningful. 
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